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ASSESSMENT OF EXPLANATORY MODELS IN GENETICS:

Insights into Students' Conceptions of Scientific Models

Abstract
Past research in a high school genetics classroom has shown that groups of students solving
computer-generated genetics problems differed in their application of assessment criteria to
the tentative models they generated and that consistent application of certain model-assess-
ment criteria correlated with success in proposing adequate explanatory models. In this study in
one high school class of 19 students, we focused classroom instruction on four specific model-
assessment criteria: two involving fit between data and model, and two involving conceptual
consistency (fit within the model itself or between it and other models or scientific knowledge).
We monitored individual students' use of those assessment criteria during two rounds of model-
revising problem solving. All students were able to assess models based on empirical fit, but,
despite explicit instruction on their use, students did not consistently apply the conceptual as-
sessment criteria to their models, perhaps in part because they lacked an understanding of
models as conceptual rather than physical entities. In those instances when conceptual consis-
tency criteria were applied to assess proposed models, students were able to identify constraints
that directed their model-revising in fruitful ways. In this paper, we discuss the implications of
these results on the use of modeling as an approach to teach students about the structure of
scientific knowledge and the nature of science as a modeling activity.

Models are becoming an important topic of discussion in contemporary education. Research-
ers are weighing in on the pedagogical pros and cons of including models in science and

math curricula, the psychological learning theories central to such model-based curricula, and
pragmatic strategies for designing classrooms that enable students to learn in these often non-
traditional environments. Although we find all this attention to scientific models exciting, it also
generates some confusion. At the core of the confusion lie the many (often mutually exclusive)
ways in which the term "model" is used. The particular view of "scientific" models that has
shaped our work in curriculum design and research on student understanding in biology is one
that takes into account what scientific practice actually entailsnamely the construction and
assessment of explanatory models.

The nature of scientific models. Perhaps the simplest way to begin defining what a
scientific model is would be to point out what it is not. Educators as well as lay people often use
the term "model" to describe (among other things) physical replicas of objects or systems. This
use would include, for example, a space-filling molecular model made of plastic as well as the
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material globes and light bulb that make up a "model" of the solar system. The term model is
also used to refer to representational systems (e.g., maps, or diagrams) and mathematical algo-
rithms or formulae (Lehrer & Schaub le, in press). Not surprisingly, researchers characterizing
middle and high school students' views on models have found that many students also cite
examples of "models" that are physical replicas, verbal or visual entities, and mathematical
formulae (Gross light, Unger, Jay & Smith, 1991).

We recognize that these types of entities, namely representations, formulae, and physical
replicas, play important roles in the science and mathematics curriculum and are sometimes
prerequisites to the formation of scientific models. However, we take the position that they are
not models in themselves. In our view, one that has been informed by the science studies com-
munity (see Giere, 1988; Kitcher, 1984;), a scientific model is a set of ideas that describes a natu-
ral process. A "scientific" model so conceived can be mentally "run," given certain constraints, to
explain or predict natural phenomena. Once constructed, models influence and constrain the
kinds of questions scientists ask about the natural world and the types of evidence they seek in
support of particular arguments.

In the discipline of genetics, practitioners construct explanatory models to account for a
variety of inheritance phenomena. The philosopher Philip Kitcher (1984) described explana-
tory "schema" in geneticsanalogous to what we are calling genetic modelsas providing the
following information:

(a) Specification of the number of relevant loci and the number of alleles
at each locus; (b) Specification of the relationships between genotypes
and phenotypes; (c) Specification of the relations between genes and
chromosomes, of facts about the transmission of chromosomes to gametes
(for example, resolution of the question whether there is disruption of
normal segregation) and about the details of zygote formation; (d) As-
signment of genotypes to individuals in the pedigree. (p. 356)

In keeping with this view of genetic practice as a modeling activity, we developed a 9-
week high school biology module in which students used a Mendelian model of simple domi-
nance to make sense of inheritance patterns in fruit flies and then revised that model in re-
sponse to anomalous data (Cartier & Stewart, in press; Johnson & Stewart, 1990). Groups of
students used the Genetics Construction Kit (GCK) software (Galley & Jungck, 1997) to generate
populations of hypothetical flies and attempted to account for different inheritance patterns
such as codominance and linkage. Students' explanatory models specified the number of alleles
at given loci and the genotype-to-phenotype mappings for populations of organisms (Hafner &
Stewart, 1995).

Assessment of explanatory models. In practice, scientific models are continuously
assessed on the basis of empirical and conceptual criteria (Darden, 1991; Laudan, 1977; Stewart
and Rudolph, in press). Specifically, scientists assess whether a particular model can explain all
of the data at hand and predict the results of future experiments (empirical assessment). More-
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over, because scientific theories are constructed of families of models and their relations to real-
world phenomena (Giere, 1988), scientists must also evaluate how well a given model fits with
other accepted models and outside knowledge (conceptual asssessment). Models that fail to sat-
isfy some or all of the assessment criteria are discarded or (more commonly) revised until they
are deemed acceptable. Thus, models are continuously revised as they are used to probe new
phenomena and collect additional data.

Kitcher (1984) described how models are used and assessed during inquiry in genetics:

After showing that the genetic hypothesis is consistent with the data and
constraints of the problem, the principles of cytology and the laws of
probability are used to compute expected distributions of phenotypes
from crosses. The expected distributions are then compared with those
assigned in part (d) of the genetic hypothesis. (p. 356)

This is somewhat analogous to what our genetics students did when solving model-revis-
ing problems using GCK. Students regularly tested proposed models for fit with existing data,
making sure that they could account for the phenotypes of offspring that resulted from particu-
lar crosses (matings of flies). Sometimes students also checked their models for predictive power
and consistency with other models such as meiosis, although this check for conceptual consis-
tency was a strategy that students used sporadically (see below).

Past research in the genetics classroom. Much of our research in this genetics class-
room to date has focused on analyses of students' problem solving as they proposed and revised
models to account for data (Finkel & Stewart, 1994; Hafner & Stewart, 1995; Stewart & Hafner,
1991; Stewart, Hafner, Johnson, & Finkel, 1992; Wynne, Stewart & Passmore, 1998). Recent stud-
ies have paid particular attention to the strategies students used to assess their proposed models
(Johnson & Stewart, 1998; Wynne et al. 1998). Johnson and Stewart (1998) found that one impor-
tant distinction between successful and unsuccessful model revisers centered around their ap-
plication of model-assessment strategies to tentative models. In general, all student groups were
able to propose tentative models during each model-revising exercise; however, the groups
differed in their ability to tinker with those models and produce final models with which they
were satisfied. The students' abilities to productively revise proposed models were closely tied
to their model assessment skills. In particular, successful groups were more likely than unsuc-
cessful ones to assess their models in relation to other models, such as meiosis.

In the study described in this paper, we attempted to help students learn to assess models
more effectively by providing them with explicit instruction on assessment criteria (both em-
pirical and conceptual). We chose to focus on a subset of assessment strategies that seemed
applicable to scientific models in general:

1. Assessment for explanatory adequacy: Does the model account for all
the data available?

2. Assessment for predictive power: Does the model successfully predict
new data?

6
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3. Assessment for fit with prior knowledge or ideas (external consistency):
Is the model consistent with what the student already knows about biol-
ogy or science in general? Is the model consistent with what the student
believes about the way the world works?

4. Assessment for fit between ideas within the model (internal consis-
tency): Do all the elements or assumptions of the model fit with one an-
other without contradiction?

Our push to help students appreciate the conceptual issues surrounding model assess-
ment in addition to the empirical ones stemmed from a belief that understanding in science
encompasses both a facility with subject-matter knowledge and familiarity with ways that knowl-
edge is generated and justified in scientific practice. In other words, to really know science, a
student must develop an understanding for epistemological as well as content-specific aspects
of the discipline. Thus, we felt our students' understanding of genetics would be incomplete
without some sense of the ways explanatory models for inheritance patterns are evaluated and
made to fit within a larger context of conceptual knowledge in genetics.

Research Design

PARTICIPANTS

The students who participated in this study were high school juniors and seniors enrolled
in an upper-level elective science course. The high school enrolled approximately 500-600 stu-
dents and served both suburban and rural communities surrounding a midsize midwestern city.
The 19 students in the genetics class had a variety of career objectives, ranging from attendance
at a 4-year college to immediate employment following high school graduation.

The teacher, a seasoned educational researcher herself, had 25 years of teaching experi-
ence and had been teaching the genetics course for nearly a decade. Development of the origi-
nal course was part of her master's degree project, and subsequent research on student prob-
lem solving in the course became the focus of her doctoral dissertation.

ACTIVITIES

Black Box. During the first three days of the class, students were given a description of a
box that had a single opening on top and three openings in the side and were asked to propose
a model for phenomena associated with the box (see Figure 1 for student handout). Specifically,
the students needed to explain why a white marble emerged from the box when a black one
was put in (and vice versa) and why the marbles always emerged in succession from the three
side openings. For the first day and a half, they worked in groups of two to four students, brain-
storming ideas and drawing representations of their black box models on posterboard. Once
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each group had finished its drawing, the groups presented their models to their classmates and
responded to questions and criticism offered by their peers. The next day was devoted to revi-
sion of the models, and presentations of the final models followed on the third day.

Several students perceived the goal of the black box activity to be to correctly guess what
was actually in the box, rather than to propose a plausible model with explanatory power. In

The following is a description of a "black box" that I saw at a conference. I wasn't able to get it, or build a copy.So, for

the time being, this description will have to suffice.

Outside appearance:

The box happened to be an off-white. sort of beige color, as opposed to "black." It stood about 30 cm high. was
approximately 50 cm wide and 30 cm deep. Located in the center on the top was a small, chimney-like opening, about
2 cm x 2 cm. On the front at the bottom were three openings similar to the opening on the top. These were numbered

1, 2, 3. from left to right.. Nothing could really be seen inside the openings-it was mostly just dark. And there were no

other openings or appendages to the box of any kind-no levers or switches on any side, noelectrical cords, nothing.

(See picture.)

Operation:

The person demonstrating the operation of the box had two containers of balls (about the size of largegumboils), one

filled with black ones. the other with white. First a black ball was dropped into the opening on top of the box. After
about 3-5 seconds, a white hail came out of the #1 opening on the front. Next, a white ball was dropped in the top. A
black ball came out of opening #2. Throughout the time of the demonstration, whenever a white ball was put in, a black

one would come out.. And whenever a black ball was put in, a white one would come out. All the balls. regardless of
color, always came out first chute 1, then chute 2, then chute 3. and then back to chute 1. and so forth. The order was

always 1, 2.3, 1, 2, 3 and always the emerging ball was the opposite color of the one most recently dropped into the top

of the box.

FIGURE 1 : STUDENT HANDOUT DESCRIBING THE APPEARANCE OF "BLACK BOX" AND
SPECIFIC PHENOMENA ASSOCIATED WITH ITS OPERATION

O
BEST COPY AVAILABLE
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fact, there was no physical box corresponding to the black box description they had received
and so no such comparison could be made. Once the black box activity was completed, students
were asked to write on the following questions in their journals: (a) What did the black box
activity teach us about science? (b) How did I come up with my ideas [for building the black box
model]? The teacher then spent one class period discussing with students their answers to these
questions and creating a class list of modeling strategies that included

Collect ideas from group members.

Brainstorm.

Rely on previous knowledge about black boxes and everyday things.

Create a representation.

Use an analogy.

Test for explanatory adequacy.

Test for predictive adequacy.

Students were told that they would revisit this modeling strategy list and add to it as the
class proceeded. The discussion of models was then put aside, and two weeks of instruction on
Mendel's model of simple dominance, meiosis, and use of GCK software ensued. Strategies for
production and evaluation of models were discussed again only after the students had acquired
facility with applying the simple dominance model to GCK problems.

Simple Dominance Model. Following the black box activity, the students read an edited
version of Mendel's (1865/1959) paper Experiments on Plant Hybridization and were visited by a
university professor playing the role of Mendel. Together with the students, "Mendel" examined
sets of peas, noted the frequency of particular variations in each generation, and listed the
results on the chalkboard. Then the students worked with the teacher to develop a model of
simple dominance that they subsequently called the Mendel model (see Table 1). Next, working
in their small groups, students spent several days in the computer lab using the Mendel model to
explain inheritance patterns in computer-generated populations of hypothetical fruit flies. The
objective was for the students to use Mendel's model of simple dominance to assign genotypes
to each of the phenotypic variants in their populations. Once the students had acquired facility
with one-trait problems, they were given problems in which they needed to explain the inher-
itance patterns in two traitsin other words, they needed to consider the underlying process of
independent assortment when making assignments of genotypes to phenotypes in their popu-
lations.

Following work with the Mendel model, students received instruction on meiosis. They
then returned to GCK problems and were asked to explain their data using a meiotic model. In
order to do this, the students had to use Punnett squares to describe the possible gametes and
fertilized eggs that would result from each cross they performed.

Model-Revising. At this point, focus turned again to model-assessment criteria. Students
were given a handout that described the four principle assessment strategies (explanatory power,

9
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predictive adequacy, external and internal consistency) and a hypothetical GCK scenario in which
a student proposed a model inconsistent with meiosis. (Specifically, the model was inconsistent
with the processes of both segregation and independent assortment.) The students were asked
to evaluate the model in terms of the assessment criteria listed on the handout and discuss their
ideas with the class.

Finally, the students were set to work on GCK problems in which traits were inherited in a
non-Mendelian (i.e., a nonsimple dominant) fashion. Consequently, students were not able to
use the Mendel model to explain the inheritance patterns they saw. They needed to alter vari-
ous components of the model in an attempt to produce a new model with which they were
satisfied. During the first round of model revising, each group of students worked to explain the
pattern in a trait inherited in a codominant fashion. During the second round of model revising,
some of the groups worked on a multiple-alleles inheritance pattern while other groups worked

on X-linkage inheritance (see Table 1 for summaries of these models). Each round of model
revision took three to four days and culminated in a class conference during which students
presented their models and answered questions posed by their peers. The teacher requested
that students present even those models that were still in the formative stage and asked that all
students discuss some of the models they considered but subsequently discarded. She encour-
aged students to talk about why they liked and disliked various models and to use the vocabu-
lary of model assessment (i.e., "explain," "predict," "consistent") during these discussions.

Throughout the class, students recorded their work in research notebooks and wrote jour-
nal entries in response to homework questions. Two exams were given, one at midterm and one
at the end of the quarter.

INTERVIEWS

Eight students (3 boys, 5 girls) were chosen to participate in a series of open-ended inter-
views designed to elicit students' strategy use as they revised their inheritance models. Choice
of participants was based solely on the students' schedules and availability: Because we wanted
to conduct the interviews outside of class time, but during the school day, only students with at
least one study period were chosen. The interviews, lasting 5-20 minutes each, were conducted
after the introductory black box activity, during each day of model revising (rounds one and
two), and following the final class discussion of models for multiple alleles and X-linkage. Each
student was interviewed 6-8 times. Interviews were audiotaped and transcribed. Students were
asked initial questions about the status of their work with GCK, such as "Are you working with a
model right now to explain this new inheritance pattern? Can you tell me about it?" Follow-up
questions were aimed at elucidating both students' current models and previous models that
they had considered and rejected. Attention was paid to the reasons students gave for rejecting
models or for being satisfied with final models. The researcher studied records (both computer-
generated records of GCK data and student-generated logs of their work) each evening prior to
the interviews and based individual questions on each student's own work. For instance, a stu-
dent might be asked, "Yesterday we talked about a three-allele model, but today I noticed that

12



www.manaraa.com

NATIONAL CENTER FOR IMPROVING STUDENT LEARNING & ACHIEVEMENT IN MATHEMATICS & SCIENCE

you seem to have stopped using that model. Can you tell me about that choice?" In addition, the
initial and second interviews included one question about the nature of models in general: Stu-
dents were asked, "Can you tell me some of the characteristics of a good model? Conversely,
what are some of the characteristics of a model you would consider to be bad or not as good?" In
the final interview, students who had proposed a second-round model with which they were
satisfied were shown representations of two competing models for the same inheritance phe-
nomenon and asked to identify which model they liked best. They were then asked to explain

the reasons for their choices.

CODING

Transcripts of interviews were coded for use of empirical and conceptual model assess-
ment strategies. In particular, aspects of Darden's (1991) and Laudan's (1977) frameworks for
thinking about problems and problem solving in genetics provided the following initial codes:

1. assessment for explanatory adequacy.

2. assessment for predictive adequacy.

3. assessment for internal consistency.

4. assessment for external consistency.

Additional codes emerged from the data as students' assessment criteria were studied and
discussed. These more pragmatic strategies included (a) assessment for simplicity; (b) assess-
ment for ease with which the model could be used; (c) assessment for a match with underlying
reality; and (d) assessment of the quality of the representation of the model. Once instances of
students' use of assessment strategies had been identified, it was noted that students made use
of conceptual criteria for assessing models less frequently than they did of empirical criteria.
Consequently, the transcripts were coded again to identify instances where students failed to
use conceptual criteria to judge modelsinstances where conceptual inconsistencies were
present but overlooked or deliberately ignored. Finally, we used the classificatory framework of
Grosslight et al. (1991) to code the interviews for students' ideas about models. In particular, we
identified instances where students referred or alluded to models as being (a) objects, (b) visual
entities, (c) verbal entities or explanations, or (d) abstract ideas or concepts.

Results and Discussion
In this paper, we argue that students assessed explanatory models in genetics mainly based

on empirical criteria. Occasionally, they also judged the conceptual adequacy of models based
on how well those models fit with what the students already knew about science (external
consistency) or on the degree to which the elements of a single model fit with one another
(internal consistency). We illustrate our claims with examples of students' problem solving and
transcripts of interviews in which students discussed their tentative explanations as well as
their reasons for discarding or retaining particular models. We also examine interview data for
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evidence of students' understanding of the nature of models in genetics. Finally, we discuss the
implications of our results on the use of modeling as a mechanism to help students understand
both conceptual and epistemological aspects of genetic practice.

HOW STUDENTS ASSESS EXPLANATORY MODELS FOR INHERITANCE
PHENOMENA

During both rounds of model revising, each of the eight students interviewed assessed
their tentative and final models based on the degree to which those models could explain their
data. Lack of explanatory power was the most common reason that students discarded a tenta-
tive model. For example, one student was working on a model for codominance, assigning geno-
types to the individuals in each of the crosses he had made. In his original model, he suggested
that two of the variations were recessive phenotypes (bithorax and tetraltera) and the other
was the dominant phenotype (grooveless):1

Interviewer: OK, so you said that you started with a model that was more like you
had two recessives and one dominant? What did that model look
like? What were the recessives?
The recessives was bithorax and I think we thought tetraltera was
the other one. But we got rid of that idea pretty quickly.
Why did you get rid of that idea?
Because after we started making more crosses, it just didn't mix. I
guess you might say.

It didn't mix?

Connor:

Interviewer:
Connor:

Interviewer:
Connor:

Interviewer:
Connor:

Interviewer:

Connor:

It didn't work.
What do you mean it didn't work?
For tetraltera to be recessive. I don't know how to say that.
OK, so you made some crosses, and you decided that your model
didn't work. What was it that you were seeing that made you decide
that your model didn't work?
I thought it was one of the vials [computer-generated vials of flies
the result of a cross] here, but I'm not seeing it. Um [pause] she [an-
other member of the research group] really doesn't have it written
out. I thought we had it on a vial, but maybe not. Well, wait, what
was your question again?

Interviewer: I'm just wondering why you decided to get rid of your first model
where you thought that both bithorax and tetraltera were recessive.
And grooveless then, I guess, would have been dominant?

' Note that this student is using the terms "recessive" and "dominant" to describe phenotypes rather than to describe
alleles, as in Mendel's simple dominance model. This inconsistent use of vocabulary was quite common once students began
working with inheritance patterns that did not fit their original notion of simple dominance. Most commonly, students
identified a phenotype or variant as being dominant if it resulted from the underlying genotype (1,1). Similarly, a variant was
labeled recessive if it resulted from a genotype with at least one '2' allele in it (i.e. 1,2 or 2,2). Consequently, students frequently
labeled more than one variant in a population as recessive.

14
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Connor:

Interviewer:

Connor:

Interviewer:

OK, well, this kind of helps it. Vial 9. We had a bithorax and a tetraltera
and we got all grooveless. That means that we're taking all 1,1 [a
genotype he is assigning to the dominant variation, grooveless] from
a 2,2 [a genotype he is assigning to both recessive variations]. We
couldn't have a 2,2 and a 2,2. If that makes any sense.
Right, so I guess what you're telling me is that when you thought
both bithorax and tetraltera were recessive, you thought they were
both 2,2's?

Yeah.

OK, and then when you do a 2,2 x 2,2 cross and you get all
grooveless

Connor: That kind of proves you wrong. It shows you that one of them [one
of the parentseither the tetraltera or the bithorax] had to be a 1,1.

Here Connor rejected his tentative model based on its inability to account for the data
produced in his ninth cross. He later revised his model and based his satisfaction with the new
model on how well the data ("the vials") supported it:

Interviewer: OK, so tell me more about your model because we sort of got off the
track here. So you told me that your new model now is that you
have two dominants, tetraltera [(1, 1)] and grooveless [(1,2)], and one
recessive, bithorax [(2,2)].

Connor: What do you want me to talk about with them? I mean, you already
know what they are.

Interviewer: Urn [pause] do you think this is a good model?

Connor: Yes. I think it is. I think it backs itself up in the notes, too.

Interviewer: What do you mean by that?

Connor: If you use a little bit of the old model, the Mendel model, and you
look at ours [pause] you look at the vials. You look at the crosses, this
kind of proves itself, I guess. I guess it just shows that it works. I'm
not sure how else to explain it.

The ability to explain cross results was the most common reason students gave for being
satisfied with a model. Moreover, when asked about the advice they would give to other stu-
dents trying to decide whether or not to keep or discard a tentative model, most students sug-
gested that any model that could explain the data at hand should be kept:

Interviewer: What if this person already had a model and she wanted to know
whether she should keep revising it or whether she should stick with
her model? What would you tell her?

Mac: Try it out. I mean, if it works for all the vials, then it's a good model.
As far as we have seen. I mean, all the models that explain, like,
every cross are good, seem to be good models so far. Some are more
complicated than others, but they seem to make sense.

[...]

15
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Griffin: If it works for every cross, keep it. If it only works for [certain] things
like ours does, try to get a better one.

[...]

Jenner: Actually, just try to do crosses and if they keep working, the chances
of your model being right are greater. If you can keep explaining
what you get.

Other students extended their empirical criteria beyond the ability to explain extant data
and found satisfaction with a model when it could be used to correctly predict additional data.
Examples of this are found in two other students' responses to the question above:

Cassidy:

Interviewer:
Cassidy:

Interviewer:

Cassidy:

Interviewer:

Cassidy:

Hannah:

It's always good to have other people's input. Like when you guys
handed out Amy and Connor's, like even Elizabeth's [representations
of their models]. You know. See if it works for other people, too.

So test your model on other people's data you mean?
Uh huh.
How would you use your model to test other people's data?
You mean, like, if they give us a problem like this? Just start crossing
them, and see if we come up with the right, or the probable, results.

So you would do a cross, and see if your model could explain that
cross, or you would predict what you would get first and then
We did a lot of that this time. Predict. Or Ms. Lambert, when she was
with us, she would ask first before we crossed it. I guess, what if you
already have a model done, then you would predict. Because you'd
cross expecting a certain thing and then if you didn't get it, you would
know that it didn't, wouldn't work.

[...]

Just do the Punnett squares with it [construct a Punnett square dia-
gram with possible gametes and fertilized eggs, given the parental
genotypes]. If she's got at least that far.

[Discussion continues]

Hannah: Fill out the Punnett squares like what we thought the next cross
would be and see if it came out, and then if it did then we knew that
our model was working.

Although students were usually quite systematic about examining proposed models for
their ability to correctly explain and predict data, they were less so about examining models for
conceptual consistency. However, some students did reject models based upon internal consis-
tency issues (where elements of a model were inconsistent with one another or a model was
inconsistently defined across a single set of data), such as in the following example:

Interviewer: OK. Are you guys working with a model now [to explain the
codominance inheritance pattern]?

Griffin: Um [pause] we don't get it.
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Interviewer:

Griffin:

Interviewer:

Griffin:

Interviewer:

Griffin:

Interviewer:

Griffin:

Interviewer:
Griffin:

Ha Ha! That's not what I asked you! Do you have any ideas at all
about how you're going to explain this data?
We don't [pause] I don't know. We can't figure anything out. 'Cause
we say we took a 1,2,3 and a 1,2,3 [crossed two individuals with
genotypes (1,2,3) and (1,2,3)1, and the kids still end up being two
things.

Still end up being two things?

Two like genotypes [two alleles per genotype]. Or like a 1,1 and those
other ones are 1,2,3 and the kids are 1,1. She said that doesn't work.

Ms. Lambert said that doesn't work?
I can't remember. It was one of you guys.

Do you see that there might be a problem with that model?
Yeah the parents [pause] the kids have to be the same genotype.
Well, not the same genotype, but, like, the same amount. Same number
of genotypes [same number of alleles per genotype].
Same number of alleles you mean?

Yeah.

In this example, Griffin was dissatisfied with his proposed model because the number of
alleles per individual (or genotype) fluctuated, or was inconsistent, from generation to genera-
tion. Perhaps more interesting, however, is the fact that Griffin failed to acknowledge the exter-
nal inconsistencies associated with the model, that is, his model was inconsistent with what the
students had been taught about the meiotic modelthe model that defines the underlying pro-
cesses of segregation and assortment. According to the meiotic model, it would be impossible for
three alleles for a given gene (the number of alleles the parents had in Griffin's model) to segre-
gate evenly into gametes. Moreover, the meiotic model specifies that each gamete has exactly
half the number of genes as the parent had. In fertilization, two gametes combine to restore
that normal complement of genes.

The significance of the above example lies in its prevalence throughout students' problem
solvinga number of students proposed models in which each individual had an odd number of
alleles for a given trait. Most students discarded these models based on their lack of internal
consistency (as Griffin did) or their lack of explanatory power. For example, Libby's group ini-
tially proposed a single-allele-per-individual model to explain codominance but rejected the
model based on their inability to explain their cross results. Next, her group suggested a three-
allele-per-individual model identical to Griffin's and again rejected the model based on its lack of
explanatory power. When asked why they discarded these models, neither Libby nor her group-
mate Jenne r mentioned the inconsistencies these tentative models had with meiosis. Instead,
they talked only about their problems making the model work with their cross data.

In this first round of model revising, neither Griffin's nor Libby and Jenner's group was able
to propose a codominance-inheritance model with which they were satisfied. We suggest that
attention to the nature of the meiotic inconsistencies within their models might have pointed

cp
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out viable alternatives to these students. We base this suggestion in part on data from a later
class when students working in larger research teams also pointed out the problem of internal
inconsistency within a model that postulated three alleles in the parental generation and only
two in the offspring. However, this group of students probed further and hypothesized about
scenarios that would have to occur during gamete formation in order for their model to be
possible. As this discussion was occurring, a number of students were grouped around the chalk-
board. Some were writing cross results or making genotype assignments for particular crosses.
Students not at the board were involved in the discussion as well, calling out genotype assign-
ments, summarizing the models that were being tested, and taking notes. The students were
testing models to explain the inheritance of a trait with five variations (a multiple-alleles pat-
tern). After about thirty minutes during which the students proposed and tested two models, the
teacher entered the room and noticed two sets of genotype assignments on the board. One set
was from a three-allele-per-individual model, and the other set from their final three-alleles-
per-population (but two-per-individual) model. She prompted the students to explain why they
had discarded the former model:

Ms. Lambert: I'm confused. I'm just curious. I'm a newcomer to this research lab. I
see you using two numbers in some areas and three numbers in
other areas. [For example, (1,2,2) was a genotype in their three-al-
lele-per-individual model and (1,2) was a genotype in their three-
allele-per-population model.]

Kelly: We forgot about that three-number trait.

Sarah: Cross that out. It didn't work.

Kelly: We didn't know how we would cross something that had three alle-
les and another thing that had three alleles to get a kid that had
three alleles.

Anne: The Punnett squares we did just didn't want to do that.

Sarah: We had to stick with only two alleles [per individual], so then we just
made it three different kinds of alleles [in the population].

Jill: Or else you just get, like, two from one parent and then one from
another. Or else three from another.

Earlier in their discussion, the students had recognized that the problem with segregation
could be solved only by postulating models with an even number of alleles per individual. How-
ever, they knew they needed more than two different alleles to generate enough variety in
genotypes to account for the five different phenotypes they had observed. These constraints led
them to suggest three different alleles in the population, but only two alleles per individual, a
model that eventually worked well to explain their data and with which they were ultimately
satisfied.

Inattention to consistency with meiosis occurred in several modeling contexts and did not
always (as it did for Connor and Libby) result in models that students found dissatisfying. In fact,
students sometimes overlooked or deliberately ignored such inconsistencies within models they
judged to have adequate explanatory or predictive power. For example, Cassidy and her group

is
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worked on a model to explain a multiple-alleles inheritance phenomenon (one in which there
were three alleles and four variations). Their initial group model described the following pheno-
type to genotype matches:

variation A (abero) (1,1)

variation B (cut) (1,2)

variation C (lyra) (2,2)

variation D (bobbed) (3,3)

When asked about her satisfaction with this model, Cassidy said it was a good model be-
cause "everything worked about it" and that "just [by] making crosses and seeing if the right
variationthe probable resultsshowed up" she and her group members were able to deter-
mine that it was an adequate model. Thus, she judged the model based upon empirical crite-
riahow well it matched her predictions of future cross data. Her assessment of the model did
not include a check for consistency with meiosis. Instead, she overlooked the fact that the model
did not postulate the existence of individuals with genotypes (1,3) or (2,3), and that these indi-
viduals had to exist (or at least be possible) if the model was consistent with the meiotic process
of segregation and subsequent fertilization. It was only after her group performed a cross that
they were unable to use their model to explain that they acknowledged the need for (1,3) and
(2,3) individuals and revised their model accordingly. It is noteworthy that Cassidy never ac-
knowledged any conceptual implications that led up to or arose from the inclusion of (1,3) and
(2,3) individuals in her model. Rather, these genotypes were matched to phenotypes within the
model solely because of their empirical utility.

A different group of students, working on a model to explain X-linkage, did make use of
the meiotic model and their knowledge about sex determination to assess their initial model and
to constrain their final one. Specifically, their model postulated a third allele (3) that was always
associated with maleness: Males always had one 3-allele and females never did. Hannah de-
scribed how their group decided that only males could have a single 3-allele:

Hannah: Yeah. So that's how we figured out that it had to be something male
and female. And then we decided to keep the same Mendel geno-
types [preserve the simple dominance relationship between alleles
1 and 2]. And, but we'd have to come up with different ones [pause]
we decided to keep the same ones for the female [(1,1); (1,2); (2,2)]
but come up with different ones for the male. And we brought in a
third allele which is the 3. And then we did have, you can't see it on
here, but we did have, like, a 3,3. But we figured that [pause] we
decided to cross it out because there's no way that you could ever
get a 3,3. So we just have two [genotypes-(1,3); (2,3)] for the male
now and three for the female.

Interviewer: Why couldn't you ever get a 3,3?

Hannah: Because you'd need a 3 from the female too. You'd have to start out
[pause] cause that's how we can identify if it's a male. If it has a 3 in
it. And if it doesn't have a 3 in it, then it's a female.
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Interviewer: OK. So every male has to have a 3.

Hannah: Yeah.

Hannah was then pressed further to be explicit about how well her model fit with her
understanding of meiosis and sex determination. Specifically, the researcher wanted to know
whether Hannah could explain how the 3-allele always became associated with maleness:

Interviewer:

Hannah:
Interviewer:

Hannah:

Interviewer:

Hannah:

Interviewer:

Hannah:

I just wanted to know what you guys are thinking about in terms of
what this third allele is. And you just told me that every male has to
have a 3, but no females can have a 3. So now I want to know, with
what you know about meiosis, how is that third allele working?

Well isn't it kinda just like the Y? With the X and Y?

Can you say more about that?
[inaudible] cause I don't really [pause] I don't really understand. We
never discussed that as a group so I don't really know how it would
work with
So what do you know about what the Y chromosome does? You're
saying that it's kinda like the Y chromosome?
That's what the 3 is, yeah.

That's what the 3 is. OK

So only the males carry it, and they pass it down. In the males.

Another group, working on the same problem, was unable to propose a model with which
they were satisfied. Ultimately, their model used two alleles (1 and 2) and two subscripts (a and
b) to describe the inheritance pattern for X-linkage. Their model was able to explain some, but
not all, of their data and had essentially no predictive power. For these reasons, the group was
dissatisfied with the model. Interestingly, their model postulated that (aa) individuals would be
female, (bb) individuals male, and (ab) individuals could be either male or female. When asked
how maleness or femaleness was determined in the (ab) individuals, Connor responded that it
might be "due to chance variation" and admitted that he "really [couldn't] figure that out at all."
His inability to explain this aspect of his model did not seem to affect his satisfaction with it.
Rather, it was simply the lack of predictive power associated with the model that Connor iden-
tified as being problematic. This serves as another example of students assessing a model solely
on empirical criteria and ignoring conceptual inconsistencies between the model and other
biological knowledge (in this case, sex determination). Given the success of Hannah's group, it
seems likely that paying more attention to the details of sex determination and focusing the
problem on how that knowledge fit with their model might have constrained Connor's group's
problem solving and pointed out new ideas for them to incorporate into later models.

Summary. Our results indicate that students assessed explanatory models for inheritance
patterns mainly on empirical criteria. Even when conceptual inconsistencies occurred between
their proposed models and other models or biological knowledge, their primary focus was usu-
ally on how well a given model could explain the data at hand. The principal exception was
when internal inconsistencies occurred: These were usually recognized by students and led to
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immediate dissatisfaction with the model(s) in question. In contrast, students frequently had
difficulty recognizing specific inconsistencies between their models and meiotic concepts or
other biological knowledge such as the method of sex determination in humans or fruit flies. In
some instances, students recognized that their models were inconsistent with other knowledge
but were willing to overlook such inconsistencies when their models were judged to have ad-
equate explanatory power. Thus, students paid more attention to empirical than to conceptual
issues and tended to value empirical power over conceptual consistency in models where both
criteria were brought to bear.

Compared with the rest of the class, those students who paid particular attention to con-
ceptual consistency (mostly with meiosis) were more likely to propose models with which they
were satisfied and which were able to explain all of their data. Moreover, the identification of
particular consistency issues led to the recognition of modeling constraints and directed model
revision in fruitful ways. For instance, students realized that in order for models to be consistent
with the processes of segregation and fertilization, an even number of alleles (or at least chro-
mosomes) needed to be postulated for each parent; students also recognized that an allele that
defined "maleness" (the 3-allele in the X-linkage model) could only be present in a single copy in
male organisms.

IMPLICATIONS FOR STUDENTS' UNDERSTANDING OF GENETICS

Given these observations, it might be easy to suggest that attention to conceptual issues
could aid students in proposing explanatory models in genetics and be satisfied with that sug-
gestion. However, it is not our aim to help students propose successful models in genetics per se,
but rather to help them build an understanding of genetics in general. Such an understanding
includes facility with some conceptual knowledge of genetics as well as familiarity with episte-
mological aspects of knowledge construction and justification in the discipline. Our results sug-
gest that using modeling as a framework for teaching genetics could provide rich opportunities
to introduce students to the structure of genetic practice.

Borrowing from Giere's (1988) notion of the structure of scientific theories, we suggest that
students should be encouraged to think of genetics as consisting of a "family" of interrelated
models. In this particular class, students might be led to consider simple dominance, meiosis,
multiple alleles, X-linkage, and codominance as a family of models that share certain assump-
tions and constraints and together provide explanations for a broad array of inheritance phe-
nomena. It is not enough for students to consider each model individuallyas geneticists must
always judge the worth of their work in relation to other accepted conceptual knowledge and
methodological norms within their discipline. For example, Kitcher (1984) noted that "constraints"
on geneticists' explanations for hereditary phenomena include

general cytological information and descriptions of the chromosomal
constitution of members of the species. The formei- will include the the-
sis that genes are (almost always) chromosomal segments and the prin-
ciples that govern meiosis. (p. 355)
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Students whose model-revising experiences are focused on recognizing and valuing such
consistency between various knowledge and conceptual models about inheritance should de-
velop a more complete view of genetic practice than those who take a less macroscopic view. In
addition, encouraging students to focus on how well various aspects of their biological knowl-
edge fit with one another pushes them to articulate their ideas in a variety of contexts. It seems
that this can only help students to firm up their understanding of biological concepts.

STUDENTS' CONCEPTIONS OF MODELS

Others have advocated a similar pedagogical approach to the one we are describing here,
namely helping students learn about scientific inquiry by providing them experiences construct-
ing and revising scientific models (Gross light et al. 1991; White & Frederiksen, 1998). In their
study of students' and experts' understandings of models in science, Gross light et al. (1991) sug-
gested that in order to facilitate students' appreciation for models as conceptual tools that guide
scientific inquiry, educators need to

provide students with experiences using models to solve intellectual prob-
lems. In this way students would have the opportunity to learn that a
model can be used as a tool of inquiry and that it is not simply a package
of facts about the world that needs to be memorized.

Second, students need experiences with multiple models of the same
phenomenon and with revising and/or modifying models as they encoun-
ter new phenomena . . . In this way students may come to realize what a
conceptual vantage point is and how it can influence one's thinking.

Thus, it seems that a curriculum focused on modeling tasks and issues such as the one in
our genetics class could afford students many opportunities to grapple with the conceptual
nature of models in genetics. In practice, however, we have found that actually getting students
to engage these ideas is not straightforward. Pushing students to articulate their reasons for
model choice, for instance, revealed that many of them made such choices based on distinctly
pragmatic criteria: They liked the way one model was represented more than another; one
model might have seemed easier to use than another; one model had fewer components to
memorize than another, and so on.

Using Grosslight's (1991) framework for classifying students' understanding of models, we
coded portions of our interviews to get a general sense of the ways in which our students were
thinking about models. Specifically, after they had spent several days proposing and critiquing
models to explain some black box phenomena, we asked the students what they felt were the
important characteristics of a good model. We posed the same question to them again after they
had practiced using the Mendel model to explain one- and two-trait GCK problems and had
begun to revise that model to explain codominance. These portions of the interview transcripts
were examined for evidence of students' thinking about models based on the following catego-
ries: (a) physical objects, (b) visual entities (such as pictures or drawings), (c) verbal entities (such
as explanations of drawings), or (d) abstract entities or ideas.
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Generally, students judged models based on how well they were represented (visual) or
how well those representations were explained (verbal). For instance, the following are stu-
dents' descriptions of good models:

(visual)

"Um, like a good drawing of it." Libby

"I consider a model [to be] physical things. Like the pictures we drew [to
represent, the inner workings of the black box]. And on the computer it's
easy for me to see cause I can, like, see how I crossed them and which
ones I crossed and it's clear to me." Cassidy

"The finer points of a model. Like this [a diagram of the inner workings
of the black box] just shows overall the general thing. I'd like to show
more depth of one area. It's kind of like on a map where they'll show,
like, a city in more depth, like, in another part." Connor

(verbal)

"The person making the model should be able to explain the details well."

Connor

"I guess I mean, just going on whether it's good or bad, I guess how they
back up their conclusions. Cause anything's possible. They just have to
explain why they think that." Mac

"Urn, you can explain what you wrote down. They have a lot of detail."
Delia

"Just have goodknow what you did. Have good knowledge about your
model. Like, be able to answer the questions that people ask about it."
Libby

Of the eight students interviewed, all of them made statements characterizing good mod-
els according to aspects of the visual or verbal properties of their representations. Only one
student (Hannah) mentioned that a good model is one that can be "applied" to explain data,
consistent with our notion of models as ideas or abstract entities.

Additionally, several students described good models as those that were "simple" or "rea-
sonable." When pressed to say more, they revealed that the quality of simplicity was desirable
because the black box was small, and only simple things would fit within it. In other words, these
students believed that the model in question was an object: Either an actual physical replica of
the inner mechanism of the black box or a blueprint that could be used to construct such a
replica. Thus, a model judged to be "reasonable" necessarily was constrained by the belief that
there was a single real entity within the box and/or by the box's physical dimensions. For ex-
ample, Mac stated, "I guess it's hard to say what would be a poor model 'cause nobody really
knows what's in the black box, so it's hard to say if it's poor." Two other students discussed
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models in the following terms:

Connor: First, like, come up with ideas about how it works, I guess. Pretty
much just brainstorm for a while, and then take the most possible
onethe most possible answer I guess you might say.

Interviewer: How do you decide which one is the most possible?

Conner: The one that looks and sounds more realistic than the others. Sounds
like it could really happen. Or be made.

[...]

Interviewer: My last question is, what kinds of characteristics make up a good
model?

Anne: I guess reasonable answers. Something that everybody would think
is possible. Maybe. Like, there's just a lot of things that you just look
at and you say there's no way that could even be possible because of
this or 'cause of that. I think that couldthey're the most realistic.

Interviewer: What do you mean by this or that? How do you decide whether
something's possible?

Anne: Like, that magnet stuff thatactually not the magnet stuff [a model
in which students proposed that the black and white balls were sepa-
rated based upon their different magnetic polarities]. Like one per-
son did something about asomething about the balls falling on
weights inside and that telling them if it goes one place or another. I
think that seems a little unreasonable.

Interviewer: What makes it unreasonable?

Anne: The box isn't big enough. There's too many little details. The stuff
would be too expensive. The stuff wouldn't be big enough.

Conclusions. The difficulty students had confronting conceptual issues while model re-
vising in genetics seems less surprising when we also consider their tendency to think of models
as physical instantiations of ideas rather than as ideas themselves. Considering these issues
together, we suggest that a great deal more attention needs to be paid to students' understand-
ings of the nature of models at the outset of a classspecifically, students should be encouraged
to think about families of genetic models that share particular conceptual elements and are
embedded within a particular epistemological context that governs their formation and use.

If we, or any other educators, are to achieve the important goal of moving away from
thinking about models as "[packages] of facts about the world that need to be memorized"
(Grosslight et al., 1991) toward a deeper understanding of the epistemological issues surround-
ing the creation and justification of models, we need to find ways for students to engage such
issues in real classrooms. Toward this end, our curriculum design collaborative has modified the
genetics curriculum described herein and undertaken research into students' understanding of
the nature of models in genetics as well as evolutionary biology (see Cartier, Stewart, & Johnson,
1998 for a description of particular genetics curriculum changes). In addition, we have contin-
ued our characterization of the criteria by which students assess models in these biological
disciplines. Reports of these projects are forthcoming.
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